

Some of Them Can be Guessed! Exploring the Effect of Linguistic Context in Predicting Quantifiers

Sandro Pezzelle¹, Shane Steinert-Threlkeld², Raffaella Bernardi^{1,3}, Jakub Szymanik²

^{1,3}CIMeC - Center for Mind/Brain Sciences, ³DISI, University of Trento ²ILLC - Institute for Logic, Language and Computation, University of Amsterdam sandro.pezzelle@unitn.it | quantit-clic.github.io

Motivation

Quantifiers ('few', 'some', 'all') are interesting because:

- They are typically considered as function words (as opposed to nouns, verbs, etc.), but they have a rich semantics
- They are of central importance in linguistic semantics and its interface with cognitive science [1,2,3]
- Their choice depends on both local and global context [4]
- Larger contexts are claimed to be detrimental for the prediction of function words in cloze test [5]

Hypotheses

- Human performance **boosted** by more context (proportional Qs)
- Models (very) effective with local context, hurt by broader context

Task & Datasets

Cloze test

<qnt> the island's breeding birds are endemic.

The island is one of the world's most biologically diverse areas, with many endemic species.

<qnt> the island's breeding birds are endemic.

<qnt> the island's breeding birds are endemic Other endemic species include the red-bellied lemur, the indri, and the aye-aye.

Quantifiers

a few of all of almost all of few of many of more than half of most of

more than hall most of none of some of

Datasets

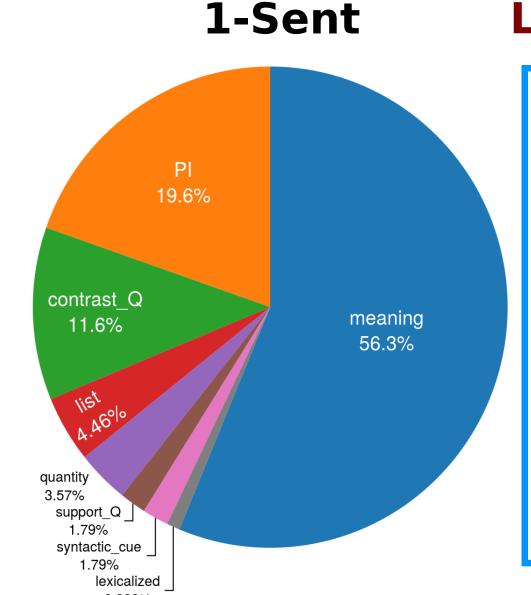
1-Sent 10350 target sentences (quantifer+*of* at beginning): <s_t>

3-Sent 10350 preceding + s_t + following: $\langle s_p, s_t, s_f \rangle$

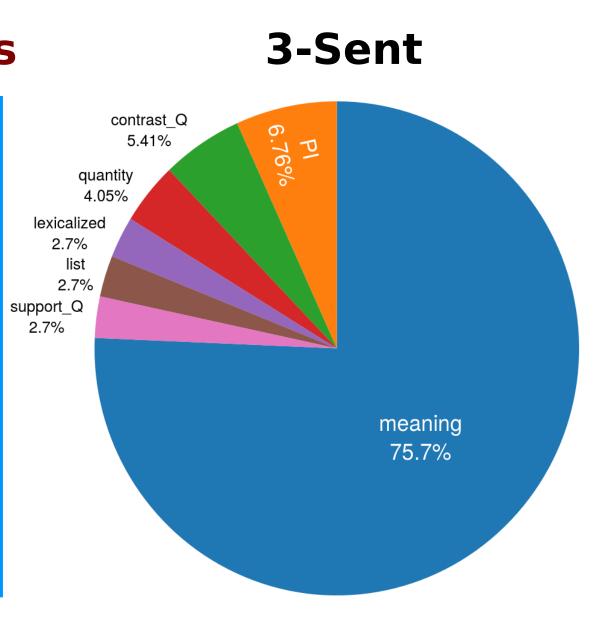
Human Evaluation

Crowdsourcing

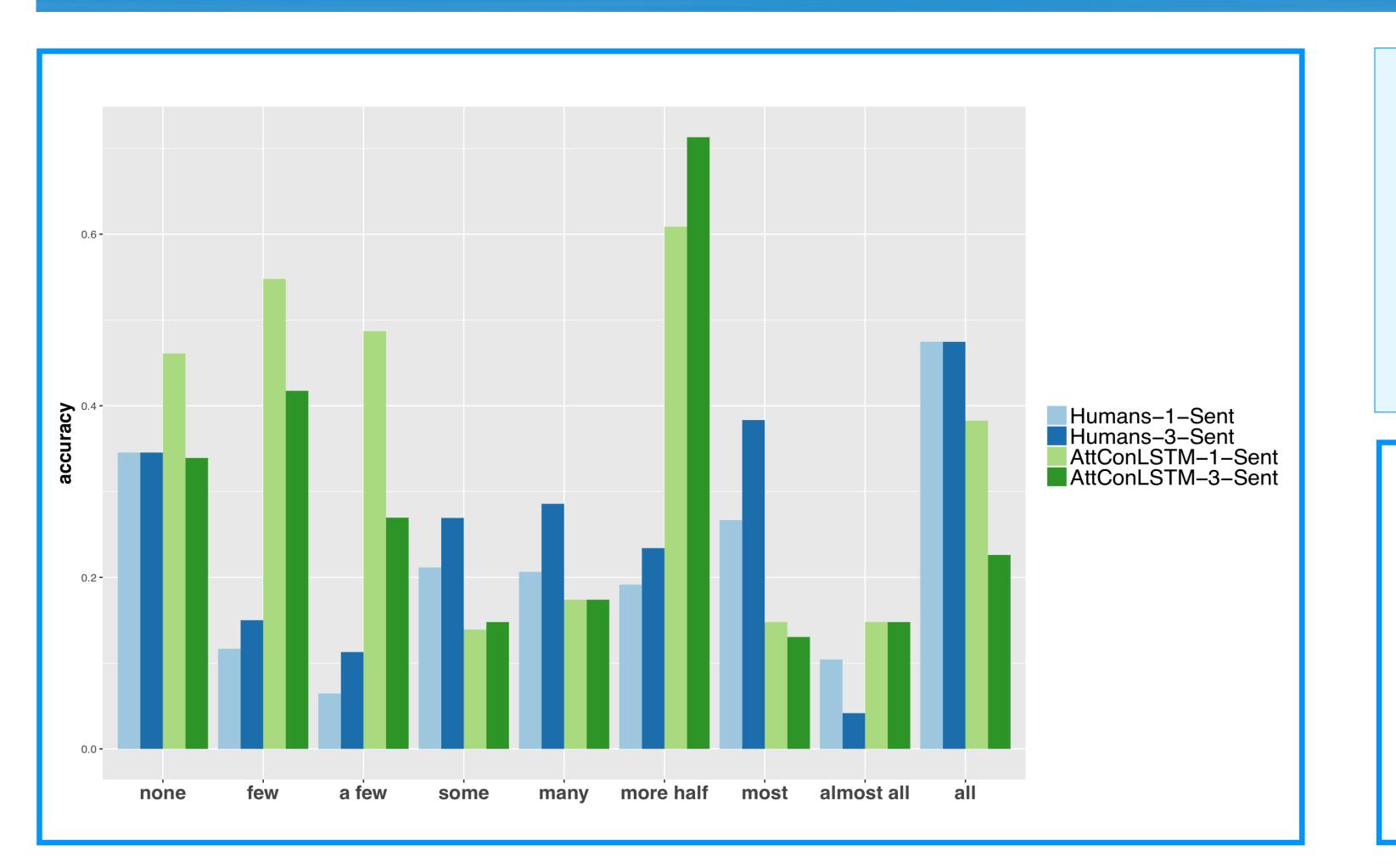
- Two experiments, one per condition (1-Sent, 3-Sent)
- 506 examples from validation set (same in two conditions)
- 3 judgments/datapoint; correctly-guessed w/ agreement > 0.66
- Higher accuracy in **3-Sent** (0.258) compared to **1-Sent** (0.221)


Models & Results

Models


8 models tested: 3 BoW baselines, 1 CNN, 4 LSTMs

2 conditions: **1-Sent**, **3-Sent**Data: 80% train, 10% val, 10% test


	1-Sent		3-Sent	
	val	test	val	test
chance	0.111	0.111	0.111	0.111
BoW-conc	0.270	0.238	0.224	0.207
BoW-sum	0.308	0.290	0.267	0.245
fastText	0.305	0.271	0.297	0.245
CNN	0.310	0.304	0.298	0.257
LSTM	0.315	0.310	0.277	0.253
bi-LSTM	0.341	0.337	0.279	0.265
Att-LSTM	0.319	0.324	0.287	0.291
AttCon-LSTM	0.343	0.319	0.274	0.288
Humans	0.221*		0.258*	

Humans vs Models

Discussion & References

Discussion

Humans do better w/ broader contexts especially on proportional Qs; models suffer due to their inability to handle longer sequences

Models capitalize more on **lexical** cues compared to humans: 41% cases in 3-Sent (hum. 24%) and 50% cases in 1-Sent (hum. 44%)

References

- [1] Jon Barwise and Robin Cooper. 1981. Generalized Quantifiers and Natural Language. Linguistics and Philosophy 4(2):159–219.
- [2] Stanley Peters and Dag Westerståhl. 2006. Quantifiers in Language and Logic. Clarendon Press, Oxford.
- [3] Jakub Szymanik. 2016. Quantifiers and Cognition. Logical and Computational Perspectives. Studies in Linguistics and Philosophy. Springer.
- [4] Kevin B. Paterson, Ruth Filik, and Linda M. Moxey. 2009. Quantifiers and Discourse Processing. Language and Linguistics Compass.
- [5] Frank Smith. 1971. Understanding reading: A psycholinguistic analysis of reading and learning to read. Holt, Rinehart & Winston.