



# Be *Precise* or *Fuzzy*: Learning the Meaning of Cardinals and Quantifiers from Vision

S. Pezzelle<sup>1</sup>, M. Marelli<sup>2</sup>, R. Bernardi<sup>1</sup>

<sup>1</sup>CIMeC, DISI - University of Trento <sup>2</sup>Department of Psychology, University of Ghent

### Overview



How many of the animals are dogs? 'Three' / 'Most'

# Motivation and Goal

#### **Motivation**

- People can refer to quantities in a visual scene by using either exact cardinals (Cs) or natural language quantifiers (Qs)
- In humans, processes underlying different cognitive and neural mechanisms
- Meaning of both Cs and Qs is learned in multimodality

#### Goal

- Single, computational architecture for learning the meaning of Cs and Qs capitalizing on 2 different functions (**cosine** and **dot product**)

### Dataset

We build a dataset of **synthetic scenes** by join together 1-9 real images from ImageNet (each image depicting **one** object)

Properties:

- 1. Balanced number of scenarios depicting *no, few, most, all* (Qs); 1,2,3,4 (Cs)
- 2. Qs' percentages defined 'a priori' (0%, 1-49%, 51-99%, 100%, resp.)
- 3. Train, Test differing w.r.t. different combination targets-distractors

#### Combinations

| Train-q |     |      |     | Train-c |     |       |      |  |
|---------|-----|------|-----|---------|-----|-------|------|--|
| no      | few | most | all | one     | two | three | four |  |
| 0/1     | 1/6 | 2/3  | 1/1 | 1/1     | 2/2 | 3/3   | 4/4  |  |
| 0/2     | 2/5 | 3/4  | 2/2 | 1/3     | 2/3 | 3/4   | 4/5  |  |
| 0/3     | 2/7 | 3/5  | 3/3 | 1/4     | 2/5 | 3/5   | 4/6  |  |
| 0/4     | 3/8 | 4/5  | 4/4 | 1/6     | 2/7 | 3/8   | 4/7  |  |
| Test-q  |     |      |     | Test-c  |     |       |      |  |
| no      | few | most | all | one     | two | three | four |  |
| 0/5     | 1/7 | 4/6  | 5/5 | 1/2     | 2/4 | 3/7   | 4/8  |  |
| 0/8     | 4/9 | 6/8  | 9/9 | 1/7     | 2/9 | 3/9   | 4/9  |  |

Combinations in Train, Test. Numerator: n of target objects. Denominator: n of targets+distractors

### **Only-vision evaluation**



Left: Qs against cosine distance. Right: Cs against dot product



- Cross-modal mapping modelling each Q/C as a separate function
- **Cosine** ('fuzzy') is used for Qs, **dot product** ('exact') for Cs
- Single-layer neural network (criterion ReLU)

# **Evaluation & Results**

Each mapping function is evaluated by means of **retrieval task** aimed at picking up the correct scenarios from Test combinations

|       | lin  |           | nn-cos |          | nn-dot |           |
|-------|------|-----------|--------|----------|--------|-----------|
|       | mAP  | <i>P2</i> | mAP    | P2       | mAP    | <i>P2</i> |
| no    | 0.78 | 0.65      | 0.87   | 0.77     | 0.54   | 0.37      |
| few   | 0.59 | 0.39      | 0.68   | 0.51     | 0.59   | 0.43      |
| most  | 0.61 | 0.36      | 0.60   | 0.29     | 0.62   | 0.45      |
| all   | 0.75 | 0.66      | 1      | <u>1</u> | 0.33   | 0.12      |
| one   | 0.44 | 0.30      | 0.38   | 0.21     | 0.61   | 0.45      |
| two   | 0.35 | 0.15      | 0.38   | 0.21     | 0.57   | 0.43      |
| three | 0.38 | 0.16      | 0.36   | 0.13     | 0.56   | 0.40      |
| four  | 0.65 | 0.47      | 0.75   | 0.60     | 0.76   | 0.61      |

### Discussion

- The two proposed objective functions turn out to best describe Cs and Qs
- Cosine is a 'fuzzy' measure evaluating the overall similarity target-scene; dot product includes information about the 'exact' number of instances

# Open issues

- Cognitive plausibility of 'one quantified expression, one function' approach
- Is the approach feasible for numerosities exceeding 'subitizing' range?
- Do quantifiers lie on an ordered scale from 'none' to 'all'?

# Ongoing work

Two behavioral studies:

- 1. Only-language study investigating semantic similarity between Qs
  - aimed at empirically test the 'ordered scale' assumption for Qs
  - how similar is the meaning of, e.g. 'none' and 'some' in a 1-7 scale

- 2. Only-vision study investigating the meaning of Qs
  - given a visual scene containing animals and artifacts, provide correct Q out of 9 options: none, almost none, very few, few, some, many, most, almost all, all

#### How many of the objects are animals?



## Thank you for your attention!